现在位置: >

06离散型随机变量的均值(教案)

1 2. 3离散型随机变量的均值与方差

2.3.1离散型随机变量的均值

教学目标:

知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望.

过程与方法:理解公式“E (a ξ+b )=aE ξ+b ”,以及“若ξB (n,p ),则E ξ=np ”.能熟

练地应用它们求相应的离散型随机变量的均值或期望。

情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文 价值。

教学重点:离散型随机变量的均值或期望的概念教学难点:根据离散型随机变量的分布列求出均值或期望

授课类型:新授课

课时安排:4课时

教 具:多媒体、实物投影仪

教学过程:

一、复习引入:

1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示

2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量

3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量

4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出

若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量 并且不改变其属性(离

散型、连续型)

5. 分布列:设离散型随机变量ξ可能取得值为x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表

06离散型随机变量的均值(教案)

为随机变量ξ的概率分布,简称ξ的分布列

6. 分布列的两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1)

7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是

k n k k n n q p C k P -==)(ξ,

(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下:

ξ 0 1 …

k … n

相关文档
相关主题
返回顶部
热门文档